Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Cell Rep ; 35(13): 109305, 2021 06 29.
Article in English | MEDLINE | ID: covidwho-1260679

ABSTRACT

The human leukocyte antigen (HLA)-bound viral antigens serve as an immunological signature that can be selectively recognized by T cells. As viruses evolve by acquiring mutations, it is essential to identify a range of presented viral antigens. Using HLA peptidomics, we are able to identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides presented by highly prevalent HLA class I (HLA-I) molecules by using infected cells as well as overexpression of SARS-CoV-2 genes. We find 26 HLA-I peptides and 36 HLA class II (HLA-II) peptides. Among the identified peptides, some are shared between different cells and some are derived from out-of-frame open reading frames (ORFs). Seven of these peptides were previously shown to be immunogenic, and we identify two additional immunoreactive peptides by using HLA multimer staining. These results may aid the development of the next generation of SARS-CoV-2 vaccines based on presented viral-specific antigens that span several of the viral genes.


Subject(s)
Antigens, Viral/immunology , COVID-19/immunology , COVID-19/virology , Peptides/immunology , SARS-CoV-2/immunology , Antigen Presentation , Antigens, Viral/metabolism , COVID-19 Vaccines , Cell Line , Epitopes, T-Lymphocyte/immunology , HEK293 Cells , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Humans , Peptidomimetics , SARS-CoV-2/genetics , T-Lymphocytes
2.
Nat Commun ; 12(1): 2593, 2021 05 10.
Article in English | MEDLINE | ID: covidwho-1223090

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 is a continuous challenge worldwide, and there is an urgent need to map the landscape of immunogenic and immunodominant epitopes recognized by CD8+ T cells. Here, we analyze samples from 31 patients with COVID-19 for CD8+ T cell recognition of 500 peptide-HLA class I complexes, restricted by 10 common HLA alleles. We identify 18 CD8+ T cell recognized SARS-CoV-2 epitopes, including an epitope with immunodominant features derived from ORF1ab and restricted by HLA-A*01:01. In-depth characterization of SARS-CoV-2-specific CD8+ T cell responses of patients with acute critical and severe disease reveals high expression of NKG2A, lack of cytokine production and a gene expression profile inhibiting T cell re-activation and migration while sustaining survival. SARS-CoV-2-specific CD8+ T cell responses are detectable up to 5 months after recovery from critical and severe disease, and these responses convert from dysfunctional effector to functional memory CD8+ T cells during convalescence.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Alleles , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Epitopes, T-Lymphocyte/immunology , Female , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Immunodominant Epitopes/chemistry , Immunologic Memory , Lymphocyte Activation , Male , Middle Aged , Polyproteins/immunology , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL